High CO2 enhances the competitive strength of seaweeds over corals

نویسندگان

  • Guillermo Diaz-Pulido
  • Marine Gouezo
  • Bronte Tilbrook
  • Sophie Dove
  • Kenneth R N Anthony
چکیده

Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO(2) may be an additional process driving a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality in contact with a common coral-reef seaweed (Lobophora papenfussii) increased two- to threefold between background CO(2) (400 ppm) and highest level projected for late 21st century (1140 ppm). The strong interaction between CO(2) and seaweeds on coral mortality was most likely attributable to a chemical competitive mechanism, as control corals with algal mimics showed no mortality. Our results suggest that coral (Acropora) reefs may become increasingly susceptible to seaweed proliferation under ocean acidification, and processes regulating algal abundance (e.g. herbivory) will play an increasingly important role in maintaining coral abundance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of ocean acidification on the potency of macroalgal allelopathy to a common coral

Many coral reefs have phase shifted from coral to macroalgal dominance. Ocean acidification (OA) due to elevated CO2 is hypothesised to advantage macroalgae over corals, contributing to these shifts, but the mechanisms affecting coral-macroalgal interactions under OA are unknown. Here, we show that (i) three common macroalgae are more damaging to a common coral when they compete under CO2 conce...

متن کامل

Seaweed allelopathy degrades the resilience and function of coral reefs.

Coral reefs are in dramatic global decline due to a host of local- and global-scale anthropogenic disturbances that suppress corals and enhance seaweeds. This decline is exacerbated, and recovery made less likely, due to over-fishing of herbivores that normally limit seaweed effects on corals. Seaweeds were known to suppress coral reproduction and recruitment, but in a recent study, we demonstr...

متن کامل

Chemically rich seaweeds poison corals when not controlled by herbivores.

Coral reefs are in dramatic global decline, with seaweeds commonly replacing corals. It is unclear, however, whether seaweeds harm corals directly or colonize opportunistically following their decline and then suppress coral recruitment. In the Caribbean and tropical Pacific, we show that, when protected from herbivores, approximately 40 to 70% of common seaweeds cause bleaching and death of co...

متن کامل

Mutualism and Coral Persistence: the Role of Herbivore Resistance to Algal Chemical Defense

Because seaweeds uncontrolled by herbivores can overgrow and kill corals, competition can exclude corals from temperate latitudes where herbivores generally fail to control seaweed biomass. In this study, we show that the coral Oculina arbuscula persists on reefs in temperate North Carolina where seaweeds are common by harboring the omnivorous crab Mithrax forceps, which removes seaweeds and in...

متن کامل

Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction

The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2011